Impaired voltage-gated K+ channel expression in brain during experimental cancer cachexia.
نویسندگان
چکیده
Cancer-induced cachexia affects most advanced cancer patients. It is characterized by anorexia, profound metabolic dysfunctions, and severe neurological disorders. Here we show that voltage-gated potassium channel (Kv) expression is impaired in the brain of tumor-bearing animals. Expression of both delayed rectifier (Kv1.1, Kv1.2, Kv1.3, Kv1.5, Kv1.6, Kv2.1, Kv3.1, Kv4.2) and A-type potassium channels (Kv1.4, Kv3.3, Kv3.4) was greatly down-regulated in brain from animals bearing a Yoshida AH-130 ascites hepatoma. The possible compensatory mechanisms (Kv1.4/Kv4.2), expression of redundant genes (Kv3.1/Kv3.3) and heteromultimeric channel formation (Kv2.1/Kv9.3) were also affected. The high circulating levels of TNFalpha and the reduced expression of the anti-apoptotic protein Bcl-XL found in the brain of tumor-bearing animals indicate that this response could be mediated by an increase in brain cell death due to apoptosis. The results suggest that brain function is impaired during cancer cachexia, and may account for the cancer-induced anorectic response and other neurological alterations.
منابع مشابه
The systemic inflammatory response is involved in the regulation of K(+) channel expression in brain via TNF-alpha-dependent and -independent pathways.
TNF-alpha, generated during the systemic inflammatory response, triggers a wide range of biological activities that mediate the neurologic manifestations associated with cancer and infection. Since this cytokine regulates ion channels in vitro (especially Kv1.3 and Kir2.1), we aimed to study Kv1.3 and Kir2.1 expression in brain in response to in vivo systemic inflammation. Cancer-induced cachex...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملRepression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel: An in Vitro Study
Introduction: Glioblastoma is an aggressive malignancy of human brain with poorly understood pathogenesis. Voltage-gated potassium (Kv) channels and Matrix metalloproteinases (MMPs) are highly expressed in malignant tumors and involved in the progression and metastasis of glioblastoma. The purpose of this study was to determine whether a voltage-dependent potassium channel blocker could modulat...
متن کاملPosterior reversible encephalopathy syndrome (PRES) associated with ovarian cancer and voltage-gated potassium channel antibodies: A case report
•We report a case of PRES in conjunction with high grade serous ovarian carcinoma•There is a documented association between chemotherapy agents and PRES•Paraneoplastic panel was positive for voltage-gated potassium channel antibodies•Paraneoplastic workup may be justified in cases with high suspicion of PRES.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEBS letters
دوره 536 1-3 شماره
صفحات -
تاریخ انتشار 2003